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1.1 Tiles and Tilings

Before saying anything about periodic tilings, let us first define what a tiling is. The following
definition formalizes the concept that a tiling consists of tiles that together cover the whole plane,
but without overlapping.

Definition 1.1. A plane tiling is a countable collection T = {T1, T2, . . .} of closed sets in the
Eucledian plane (R2, ‖·‖2) whose union is the entire plane and whose interiors are mutually disjoint:

⋃

T∈T
T = R2,

⋃

S,T∈T
S 6=T

S◦ ∩ T ◦ = ∅.

The sets T ∈ T are called the tiles of T .

This definition could be extended to more dimensions, but here we will simply consider the plain
plane, R2, equipped with the Eucledian norm ‖·‖2 and its induced metric, or distance function,
d(·, ·). We will not give an axiomatic description of the Eucledian plane here — remember this is
a course on tilings — but we will assume that you are familiar with basic geometry.

The above definition of a tiling is in fact a bit too general for most purposes, so often we
put some additional restrictions on the tiles. An example condition is that all tiles are so called
topological disks. The idea is that this rules out tiles that have holes, are not connected or (partly)
consist of lines or curves.

In [GS], the following definition is given for a topological disk: a set T ⊂ R2 is called a
closed topological disk1 when there exists a homeomorphism φ : R2 → R2 that maps T onto the
the closed unit disk D :=

{
x ∈ R2 : d(0, x) ≤ 1

}
. A homeomorphism in turn is a bicontinuous

bijective mapping. A bijective mapping φ is bicontinuous if both φ and φ−1 are continuous. Note
that in the usual definition of a topological disk, φ needs to be a homeomorhpism from T do D,
but [GS] defines it in this way. It makes it easy to proof the following lemma:

Lemma 1.2. A topological disk has non-empty interior.

Proof. Let φ : R2 → R2 be a homeomorphism that maps a tile T to the closed unit disk D. Denote
the open unit disk by E, then E ⊂ D and by the continuity of φ, the set φ−1(E) is an open subset
of R2. By the bijectivity of φ we have φ−1(E) ⊂ T and φ−1(E) 6= ∅, hence T contains a non-empty
open set, namely φ−1(E). But then T has non-empty interior.

1.2 Symmetries

Some tilings have a certain kind of ’symmetry’ in themselves, namely that under a rigid motion
of the plane, like a rotation or translation, the tiling remains ’the same’. We intend to formalize
this concept so that we can classify tilings according to these symmetry properties. We start by
defining the rigid motions we have in mind:

Definition 1.3. An isometry is a mapping σ : R2 → R2 that preserves distances, i.e. for all
A, B ∈ R2 we have d(σA, σB) = d(A,B).

A special isometry is the identity mapping, denoted by Id, that simply maps every point to
itself. The isometries of the plane are easily classified:

Theorem 1.4. Any isometry σ : R2 → R2 is

1. a rotation of an angle θ around a point C, denoted by RC,θ, or

1An open topological disk must be homeomorphic with the open unit disk.
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Figure 1: Summary of symmetry symbols commonly used.

2. a translation with a vector u, denoted by Tu, or

3. a reflection in a line L, denoted by ML, or

4. a glide reflection: a reflection in the line L, followed by a translation of distance d along
that line, denoted by GL,d.

Before going to a sketch of the proof of this theorem, let us first make a few remarks. Note
that the identity mapping Id could be classified as either a translation over the zero vector or
a rotation over an angle that is an integer multiple of 2π. Also, a reflection could be seen as a
glide reflection followed by a translation over zero distance. We also distinguish between direct
and indirect isometries: direct isometries do not change the orientation of the plane, indirect
isometries do change the orientation. With ’orientation’ we mean e.g. the orientation of the three
vertices of a triangle: clockwise or anti-clockwise. See Figure 1 for details on the used symbols to
indicate symmetries in figures.

Sketch of proof of Theorem 1.4. Let σ : R2 → R2 be an isometry. Look at the images under σ of
the origin O and the two points A and B with respective coordinates (1, 0) and (0, 1). We can
start by choosing σO anywhere in the plane. Then we must now choose σA somewhere on the
circle with radius 1 and center σO. The same holds for σB, but now we are left with two only
choices as we must have d(σA, σB) = d(A, B) =

√
2.

Now note that we have completely determined σ, as every point in the plane is uniquely
determined by its distance to three points that are not on a straight line, and σO, σA and σB are
three such points.

By distinguishing several cases for the choice of σO, σA and σB, the theorem can now be
proved. If the orientation of the triangle OAB is not changed by σ, we can distinguish two cases:

• The triangle OAB is not rotated; then σ is simply a translation by σO (seen as vector).

• The triangle OAB is rotated; then σ is a rotation about some point in the plane; the
contruction of this point we leave as an exercise.

If the orientation of the triangle OAB is changed by σ, we can contruct a line of glide-reflection.
The details of this construction we also leave to the reader. If we find the associated distance of
movement to be zero, we can simply call σ a reflection.
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We can now easily proof the following corollary:

Corollary 1.5. Every isometry σ : R2 → R2 is bijective.

Proof. Let σ : R2 → R2 be an isometry, then it is of one of the types described in Theorem 1.4,
and we can give its inverse σ−1 depending on this type:

RC,θ
−1 = RC,−θ, Tu

−1 = T−u, ML
−1 = ML, GL,d

−1 = GL,−d,

for any line point C, angle θ, vector u, line L and distance d.

After having defined the ’rigids motions’ mentioned in the introduction (as being isometries),
we are ready for symmetries:

Definition 1.6. A symmetry of a collection C of sets S ⊂ R2 — like a tiling — is an isometry
σ that maps every set S ∈ C onto some set in C: ∀S ∈ C we have σS ∈ C. A symmetry of a set
S ⊂ R2 is a symmetry of the collection C = {S}, i.e. σ maps S onto itself: σS = S.

We will denote the collection of all symmetries of a set S ⊂ R2 by I(S), and the collection of
all symmetries of a collection C of subsets of the plane by I(C). Additionally, the set of all direct
symmetries of a collection C we will denote by I(C)+, and the set of all indirect symmetries of a
collection C by I(C)−. Note that all these sets of symmetries are in fact subsets of I(R2), whose
elements we classified in Theorem 1.4.

Before continuing, we owe you the definition of a periodic tiling. Intuitively, we think of a
periodic tiling as a tiling with a repeating pattern in two directions. We can now define it using
the terminology just introduced:

Definition 1.7. A periodic tiling is a tiling T with two non-parallel translations over positive
distance in its symmetries: there exist Tu, Tv ∈ I(T ) with u and v linearly independent vectors.

1.3 Groups

We will see that the symmetries of a set or a tiling have an algebraic structure called a group, but
not after having defined what a group actually is.

Definition 1.8. A group (G,¯) is a set G with a binary operation ¯ : G×G → G that has the
following three properties:

1. The operation ¯ is associative, i.e. (a¯ b)¯ c = a¯ (b¯ c) for all a, b, c ∈ G.

2. There exists a neutral element e ∈ G such that e¯ a = a¯ e = a for all a ∈ G.

3. For every element a ∈ G there exists an element b ∈ G such that a ¯ b = b ¯ a = e; this
element b is called the inverse of a.

You have likely run into groups in the past, and a few examples might help to fresh up your
memory:

• (Z,+), the integers with as operation addition. Its neutral element is 0 and the inverse of
any k ∈ Z is given by −k.

• (Z/n,+), with n ∈ N: the integers modulo n, with the operation addition modulo n. The
neutral element is again 0, and the inverse of an k ∈ Z/n is given by −k (mod n).

• (Q∗, ·), where Q∗ denotes Q \ {0}, is also a group with multiplication as operation. The
neutral element is again 1 and the inverse of n

m is m
n .

• (Z2,+), the ordered integer pairs with vector addition, has neutral element (0, 0); the inverse
of (k, l) is simply (−k,−l).
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We will often write G instead of (G,¯); from the context it will follow which operation we
have in mind. We can also make new groups out of old ones by selecting only a subset. These
new groups are called subgroups:

Definition 1.9. A subgroup of a group (G,¯) is a non-empty set H ⊂ G such that:

1. The binary operation ¯ restricted to H is closed, i.e. for all a, b ∈ H we have a¯ b ∈ H.

2. The inverse of any element in H is again in H.

You can easily check that the neutral element e ∈ H and that (H,¯) is a group again.

1.4 Symmetry Groups

Let’s get back to our tilings and symmetries. We said that the symmetries of a set S ⊂ R2 or tiling
T do form a group. By the following theorem this is indeed the case, under suitable conditions,
hence we speak of I(S) and I(T ) as the symmetry group of S, respectively T .

Theorem 1.10. Under any of the following conditions, the symmetries of a collection C of subsets
of R2 do form a group w.r.t. to the operation of composition:

(i) C is finite, i.e. contains finitely many elements (particular case: C = {S}, S ⊂ R2), and

(ii) C is a tiling whose tiles have non-empty interior.

Proof. We start by showing that I(R2) is a group, and then we will show that under any of the
above conditions, I(C) forms a subgroup of I(R2).

Remember the group operation is simply composition: A after B, denoted by A ◦ B or AB
for short. In the first place we note that the composition of two symmetries of R2 is a symmetry
again. Associativity is a property of composition; in general

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x))) = f((g ◦ h)(x)) = (f ◦ (g ◦ h))(x).

The neutral element of (I(R2), ◦) is the identity map Id. Because symmetries are isometries, they
are bijective (cf. Corollary 1.5), and hence there exists for every σ ∈ I(R2) an inverse σ−1 such
that σ−1σ = σσ−1 = Id.

Now we show that under condition (i) or (ii), C is a subgroup of I(R2). If σ1, σ2 ∈ I(C),
then for any S ∈ C we have, by applying the definition of symmetry to σ2, that σ2S ∈ C. By
also applying this definition to σ1, this is followed by the conclusion that σ1σ2S ∈ C. But then
σ1σ2 ∈ I(C), or in other words: ◦ restricted to I(C) is closed.

To see that the inverse of any σ ∈ I(C) is again in I(C), we really need a condition like (i) or
(ii). Consider a symmetry σ ∈ I(C) with inverse σ−1 ∈ I(R2).

Assume first that (i) holds. Consider the assicated map σ∗ : C → C defined by σ∗S = σS for
all S ∈ C. (This definition is valid by the definition of a symmetry.) Note that if we have any
S, T ∈ C with S 6= T , then also σS 6= σT because σ is bijective. This shows that σ∗ is an injective
map. Since σ∗ operates on a finite set, C, it then also is bijective. Hence for every S ∈ C there
exists a T ∈ C such that S = σ∗T = σT , showing that σ−1 is indeed a symmetry of C.

Assume now that (ii) holds. Let S ∈ C be chosen arbitrary, then we must show that σ−1S ∈ C.
By assumption, S has non-empty interior, S◦. Because C is a tiling, S◦ is disjunct with the
interiors of the other tiles in C. Since (S◦)c is closed, we know it contains the closures of the
interiors of all the other tiles in C. These closures simply equal the tiles themselves, hence S◦ is
not only disjunct with the interiors of all the other tiles, but also with the other tiles themselves.

Now look at σ−1(S◦); because C is a tiling, this set intersects at least some tile T ∈ C. The
image of this tile T under σ now intersects S◦. Because σ is a symmetry of C, σT ∈ C. The only
tile covering S◦ is S, hence from σT ∩ S◦ 6= ∅ it follows that σT = S.

We intend to classify tilings according to their symmetry groups. This requires us to define
when we consider two symmetry groups to be ’equal’, or ’of the same type’. The concept of an
isomorphism comes into play here:
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Figure 2: Collections having a symmetry group isomorphic to (Z/8, +) and (Z2, +), respectively.

Definition 1.11. An isomorphism of two groups (G,¯) and (H, ¡) is a bijective map φ : G → H
such that for all a, b ∈ G we have φ(a) ¡ φ(b) = φ(a¯ b).

Note that then also for all a, b ∈ H we do have

φ−1(a ¡ b) = φ−1
(
φφ−1(a) ¡ φφ−1(b)

)
= φ−1φ

(
φ−1(a)¯ φ−1(b)

)
= φ−1(a)¯ φ−1(b).

It seems tempting to define that we consider two symmetry groups to be of the same type if
there simply exists an isomorphism between two, but we will require even a little bit more:

Definition 1.12. We consider two symmetry groups I(C1) and I(C2) to be of the same type
when there exists an isomorphism φ : I(C1) → I(C2) that also maps the direct symmetries onto
the direct symmetries: φ(I(C1)+) = I(C2)+.

We consider some examples of symmetry groups.

• The symmetry group
{
RC,2π/k : k = 0, . . . , n− 1

}
, for n ≥ 2. It arises for example as the

symmetry group of the collection of sets in the plane on the left in Figure 2 (with n = 8).
This symmetry group is isomorphic with (Z/n,+).

• The symmetry group {Tnu+mv : n, m ∈ Z}, with u and v two independent vectors in R2. It
arises for example as the symmetry group of the tiling on the right in Figure 2 (with u and
v the standard base vectors of R2). This symmetry group is isomorphic with (Z2, +).

• The symmetry groups {Id,ML} and {Id, RC,π} are both isomorphic to (Z/2,+). However,
they are not of the same type, as the former contains an indirect symmetry and the latter
not. In fact, we made the special notion in Definition 1.12 above regarding the mapping of
direct symmetries onto direct symmetries in order to be able to distinguish between these
two symmetry groups.

As an additional remark, we note that the subset of direct symmetries I(C)+ of a symmetry
group I(C) is a group again. We leave it to the reader to proof this simple fact.

1.5 Strip Groups

We now come to the classification of symmetry groups that are of the same type. Clearly there
is an infinite number of symmetry groups containg no translations at all. For example, we can
extending the figure on the left in Figure 2 to include an arbitrary number of rotations. Also, we
will look only at the symmetry groups of ’nice’ tilings, because otherwise the translations in the
symmetry group might not constitute a translation lattice. To this end, it suffices that the tiles
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Figure 3: The seven strip groups.
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1. are compact, and

2. have non-empty interior.

As shown before, the second condition garantuees that the symmetries actually do form a group.
Note that topological disks are compact (as the closed unit disk is compact and homeomorphism
preserve compactness), so together with Lemma 1.2 it follows that tilings of topological disks satisfy
the above requirements. Also note that for R2, compactness of tiles is equivalent to boundedness.

As said, we will focus our attention to symmetry groups of tilings with bounded tiles having
non-empty interior that do contain translations. In this section we will show that there are 7 so
called strip groups — groups of such tilings whose translations are all parallel to one direction —
and in the next section we will show that there are 17 so called crystallographic groups — groups of
such tilings including translations in two independent directions, i.e. belonging to periodic tilings.

First a little word on notation: we will write for any symmetry A and k ≥ 1:

Ak := A ◦A ◦ . . . ◦A︸ ︷︷ ︸
k times

, A0 := Id and A−k := (A−1)k.

With the order of a rotation RC,θ, we will mean the number

inf
{
k ∈ N∗ : Rk

C,θ = RC,kθ = Id
}

= inf {k ∈ N∗ : (∃l ∈ Z) kθ = l2π},
where N∗ denotes the set of positive integers.

Let’s start now with the strip groups. Consider a tiling T whose tiles are bounded and have
non-empty interior. Now it can be shown that all translations are a multiple of one translation
Tu, i.e. the subset of translations in I(T ) is given by

{
T k
u : k ∈ Z}

for some u ∈ R2 \{0}. We will
call Tu the generating translation of the strip group. We leave it as an exercise to the reader to
proof this. As a hint, consider the images under repeated translations Tu of a small open sphere
that is completely contained within a tile. Deduce that there must be a ’smallest’ u such that all
translations are a multiple of Tu.

We can now make the following important observation:

Lemma 1.13. A strip group contains rotations of at most order 2.

Proof. If a strip group would contain a rotation RC,θ of an order larger than 2, then θ is not an
integer multiple of π. Now, if the translation Tu is in the symmetry group, also RC,θTuRC,θ

−1 is
in the symmetry group. By geometrical construction, you can see that this symmetry is in fact a
translation not parallel to u, finishing the proof.

In fact, if I(T ) contains one rotation of order 2, it contains a lot more rotations of this order.
This can be shown by combining the right translations and rotations: T k

uRC,π = RC+ku/2,π for
all k ∈ Z. Morover, RC,πRD,π = T2(D−C), showing that all centers of rotation must lie on a line
at distances 1

2‖u‖2. Together, his shows that the direct symmetries of a strip group are of one of
these two forms:

• H1 = {Tku : k ∈ Z}, or

• H2 = {Tku : k ∈ Z} ∪ {
RC+ku/2,π : k ∈ Z}

.

In fact, H1 and H2 are symmetry groups themselves, see the corresponding tilings in Figure 3.
We shall construct the five other strip groups using these two base groups.

So let’s start with H1, having generating translation Tu. We can now add reflections and/or
glide reflections to it. Note that any reflection added should either be in the direction of the
generating translation Tu, or be perpendicular to it, because otherwise a translation in another
direction than u would appear.

With regard to glide reflections, we can say that appyling a glide reflection GL,d two times yields
a translation along L over distance 2d. Hence any glide reflection (that is not just a reflection) in
the strip group must be parallel to u. Moreover, there cannot be glide reflections in two different
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parallel lines in it, because together they would produce a translation having not only a component
in the direction of u, but also in the direction perpendicular to u. Note that this not only is true
for two glide reflections along two different parallel lines, but also for the special cases where one
or both is a normal reflection. Also note that not both a (glide) reflection in a line parallel to u
and a reflection in a line perpendicular to u can be in the symmetry group, as this would result
in a rotation of order 2.

Let us add a glide reflection GL,d, with L parallel to u. Let k ∈ Z be such that G2
L,d = Tku.

We cannot add another reflection in a line perpendicular to u, as discussed above. Also we find
that d = 1

2‖ku‖2 = 1
2k‖u‖2. So all glide refections in L over a distance of the form d + n‖u‖2 =

( 1
2k + n)‖u‖2, with n ∈ Z, are in the group. In particular, if k is even, then ML is in the group.

If k is odd, then surely ML is not in the group, as then Tu/2 would be in the group.
If there is no reflection in the group, then certainly ML is not and thus, by the above, k is odd.

But then all glide reflections in L over a distance of ( 1
2 + n)‖u‖2 with n ∈ Z are in the group. If

there is a reflection in the group, then it must be ML (by statements made above), and now k
must be even. Then all glide reflections in L over a distance of n‖u‖2 with n ∈ Z are in the group.

Actually, this shows that there are precisely two strip groups based on H1 with glide reflections
in it:

• H3 = {Tku : k ∈ Z} ∪ {GL,kd : k ∈ Z} 3 ML, and

• H4 = {Tku : k ∈ Z} ∪ {
GL,(k+1/2)d : k ∈ Z} 63 ML,

where d = 1
2‖u‖2 and L ‖ u.

We can of course also add lines of reflection perpendicular to u. If L is a line perpendicular
to u, then T k

uML = ML+u/2, another reflection in a line perpendicular to u. If there are two
reflections in lines perpendicular to u, say MK and ML, then their product is a translation in the
direction of u, over a distance double the distance between K and L. Hence the distance between
K and L must be half an integer multiple of ‖u‖2. Hence there is only one group based on H1

left:

• H5 = {Tku : k ∈ Z} ∪ {
ML+ku/2 : k ∈ Z}

, L ⊥ u.

The groups based on H2 can be found in a similar fashion. We won’t get into all the details
here. You can reuse some observations made in our discussion of augmenting H1. The resulting
groups are

• H6 =
⋃

k∈Z
{
T k
u , RC+ku/2,π, GL,kd,MK+ku/2

} 3 ML, and

• H7 =
⋃

k∈Z
{
T k
u , RC+ku/2,π, GL,(k+1/2)d,MK+(k+1/2)u

} 63 ML,

where d = 1
2‖u‖2 and K ⊥ L ‖ u.

1.6 Crystallographic Groups

We will now briefly consider the crystallograhpic groups of a tiling T . Note that by assumption
the tiles of T are bounded and have non-empty interior, and I(T ) contains translations in two
independent directions.

It can be shown that under these assumptions, there exists independent vectors u and v
such that all translations in I(T ) are given by {Tnu+mv : n,m ∈ Z} =

{
Tn
u ◦ Tm

v : (n,m) ∈ Z2
}
.

Analogous to the strip case, Tu and Tv are called the generating translations.
The proof of this is again left as an exercise, with a similar hint as in the strip case: consider the

images of a small sphere contained within a given tile under two arbitrary ’smallest’ independent
translations Tu and Tv that are in the symmetry group. Map all images to the parallellogram
spanned by u and v in a modulo-like way. Deduce that there cannot be another translation Tw

in the symmetry group with w not an integer linear combination of u and v.
Associated with every point P in the plane, there is a translation lattice consisting of the images

of that point under the translations in I(T ), i.e. the lattice is given by
{
Tn
u ◦ Tm

v (P ) : (n,m) ∈ Z2
}
.
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Now we can look at the Voronoi cells formed by the translation lattice of a point P . A Voronoi
cell V (Q) of the point Q in the lattice (of a point P ) is defined as

V (Q) =
{
X ∈ R2 : d(X,Q) ≤ d(X,R) for all lattice points R 6= Q

}
.

Thus, a Voronoi cell constitutes the set of all points that have Q closest to it among all lattice
points.

There exist a number of theorems about the shape of these cells that will help classifying the
crystallographic groups. We will not prove them, but just mention them as a number of important
observations. In the following statements we consider the lattice belonging to a point P .

• First, we note that all Voronoi cells of a lattice are congruent, i.e. they have the same shape;
moreover they have the same orientation.

• Secondly, when looking at a point Q in the lattice, the shape of the boundary of the Voronoi
cell V (Q) belonging to Q, is either a rectangle or a hexagon, symmetric with respect to Q
(i.e. RQ,π is a symmetry of V (Q)).

• Lastly, a rotation in the symmetry group of T , not equal to Id, with its center at one of
the lattice points Q, maps the lattice onto itself. This implies that the rotation maps the
Voronoi cell V (Q) of Q onto itself. By using the possible shapes of the Voronoi cell, we
conclude that the rotation has either order 2, 3, 4 or 6.

Now, we can build the ’basic’ symmetry groups consisting of only direct symmetries by allowing
rotations of increasing order to appear. This approach yields five symmetry groups, which we will
denote by G1 through G5.

From these five groups, the twelve other groups can be constructed. It would be way out of the
scope of this lecture to fill in all the details for that construction. There are numerous websites on
the internet that list these symmetry groups, together with examples of tilings or patterns that
having these symmetry groups and even with animations showing the corresponding symmetries.

Finally, we can make one last remark about our definition of symmetry groups begin of the
same type. In this definition, we demanded that the direct symmetries were mapped onto the
direct symmetries by the isomorphism involved. For the strip groups, this requirement cannot be
dropped, as then H2 and H5 turn out to be isomorphic, but H+

2 6= H+
5 . For the crystallographic

groups, this requirement can be dropped however! This, in fact, is a theorem that can be proven
by showing that none of the groups G1 through G17 is isomorphic to another. See e.g. [A], which
elaborates on this whole subject.
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