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Abstract. We discuss the maximum likelihood estimator (MLE) for competing risk prob-
lems under various forms of interval censoring. The number of intervals is allowed to be
random and to be different for different observations. It is shown that the MLE is uniquely
determined. Moreover, a general algorithm is developed to compute the MLE. This is an
extension of work reported in Maathuis (2005).

1. Model

Let X ∈ [0,∞) denote the failure time and Y ∈ {1, . . . ,K} denote the failure cause in
the competing risks problem. K ≥ 1 is the number of possible causes of failure, and is not
stochastic.

We can’t observe X and Y directly. Instead we observe the failure state at stochastic
times T1, . . . , TC , with the stochastic variable C ≥ 1 the number of observation times and
0 ≤ T1 < . . . < TC . We assume the pair (X,Y ) to be independent from (C, T1, . . . , TC).
For convenience we define T0 = −∞ and TC+1 = ∞. The failure state Si at each Ti, for
i = 1, . . . , C, tells whether failure has already occurred (X ≤ Ti), and only in that case also
the failure cause (Y ).

Note that if C = 2 is a constant, we are dealing with what is called Interval Censoring,
case 2 in Groeneboom and Wellner (1992). If C = 1 is a constant, we are dealing with the
Current Status Data problem discussed in Maathuis (2005).

Now we define I, U and V by

U = TI−1 < X ≤ TI = V.

Note that I is uniquely defined in this way and can be directly observed from the failure
states at T1, . . . , TC . It takes values in the range 1 . . . C + 1 and indicates the index of the
first observation time at which a failure was observed. We know the failure cause if and only
if I ≤ C. Next we define the K + 1 element vector ∆ by

∆k = 1{I≤C,Y =k} for k = 1, . . . ,K
∆K+1 = 1{I>C}.

Note that ∆ can also be directly observed from the failure states.
Let us now define one observation by Z = (C, T1, . . . , TC , S1, . . . , SC) and let Z1, . . . , Zn be

a sample of observations, where we write Zi = (Ci,Ti,1, . . . , Ti,Ci , Si,1, . . . , Si,Ci), i = 1, . . . , n.
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Next, let T ′(1), . . . , T
′
(p), 1 ≤ p ≤ 2n, denote the order statistics of the (non-empty) set

n⋃
i=1

{Ui, Vi} \ {−∞,∞} ,

so we have
−∞ < T ′(1) < . . . < T ′(p) <∞.

These will be our times of interest.
Now define

Nk,i =
n∑

l=1

∆k,l1nUl=−∞,Vl=T ′
(i)

o for k = 1, . . . ,K, i = 1, . . . , p

Nk,i,j =
n∑

l=1

∆k,l1nUl=T ′
(i)

,Vl=T ′
(j)

o for k = 1, . . . ,K, 1 ≤ i < j ≤ p

Ni =
n∑

l=1

∆K+1,l1nUl=T ′
(i)

,Vl=∞
o for i = 1, . . . , p.

Note that
• Nk,i counts observations l where Xl ≤ Tl,1 = T ′(i) and Yl = k,
• Nk,i,j counts observations l where T ′(i) = Tl,Il−1 < Xl ≤ Tl,Il

= T ′(j) and Yl = k and
• Ni counts observations l where T ′(i) = Tl,Cl

< Xl.

In this way, we count every observation once, so we have

p∑
i=1

 K∑
k=1

Nk,i +
p∑

j=i+1

Nk,i,j

+Ni

 = n. (1.1)

2. The Maximum Likelihood Estimator

2.1. Derivation of the MLE. For this problem, we are interested in the sub-distribution
functions

Fk (t) = P (X ≤ t, Y = k) for k = 1, . . . ,K.
Let us denote

Fk,i = Fk

(
T ′(i)

)
for k = 1, . . . ,K, i = 1, . . . , p

and

F+,i =
K∑

k=1

Fk,i for i = 1, . . . , p.

The likelihood1 for the sub-distribution functions F = (F1, . . . , FK) now is given by

p∏
i=1

 K∏
k=1

FNk,i

k,i

p∏
j=i+1

(Fk,j − Fk,i)
Nk,i,j

 (1− F+,i)
Ni

 (2.1)

1Actually this is a conditional likelihood, conditioned on the observation times {(Ci, Ti,1, . . . , Ti,Ci)}
n
i=1.

We use the assumption that the failure times X1, . . . , Xn are independent of these observation times, so that
the conditional maximum likelihood estimator still is a good estimator.
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and the corresponding log-likelihood is

l(F ) =
p∑

i=1

 K∑
k=1

Nk,i lnFk,i +
p∑

j=i+1

Nk,i,j ln (Fk,j − Fk,i)

+Ni ln (1− F+,i)

 . (2.2)

The maximum likelihood estimator (MLE) F̂ =
(
F̂1, . . . , F̂K

)
for the sub-distributions is

given by the maximisation problem

l
(
F̂
)

= max
F∈FK

l (F ) (2.3)

with
FK =

{
F ∈ RpK : 0 ≤ Fk,1 ≤ . . . ≤ Fk,p, k = 1, . . . ,K, F+,p ≤ 1

}
. (2.4)

2.2. Uniqueness of the MLE. We are interested to know for which pairs k and i the
maximum likelihood estimator F̂k,i is uniquely determined. It is easy to see that such F̂k,i

must appear somewhere in the log-likelihood. This motivates the definition for k = 1, . . . ,K
of the set

Ik =

i ∈ {1, . . . , p} : Ni +Nk,i +
p∑

j=i+1

Nk,i,j +
i−1∑
j=1

Nk,j,i > 0

 . (2.5)

and the set of index pairs

I = {(k, i) : i ∈ Ik, k ∈ {1, . . . ,K}} . (2.6)

This is, for given k, the set of indices i for whichFk,i actually appears in the log-likelihood
l(F ). Later, we will also use the following notation

mk = |Ik| , k = 1, . . . ,K, and m =
K∑

k=1

mk (2.7)

and for k = 1, . . . ,K the ordered indices

ik,1 < · · · < ik,mk
such that Ik = {ik,j}mk

j=1 . (2.8)

Theorem 2.1. The maximum likelihood estimator F̂k,i is uniquely determined for all (k, i) ∈
I.

Proof. First note that the natural logarithm is a strictly concave function2. Also note that
the log-likelihood l is the sum of terms that are all concave3.

Now let F̂ and Ĝ be such that

l
(
F̂
)

= l
(
Ĝ
)

= max
F∈FK

l (F ) .

So we need to prove that F̂k,i = Ĝk,i for all (k, i) ∈ I. Let

Ĥ =
1
2
F̂ +

1
2
Ĝ

2A function f is strictly concave when f (λx + (1− λ) y) > λf (x) + (1− λ) f (y) for all x, y in the
domain of f and all λ ∈ (0, 1).

3A function f is concave when f (λx + (1− λ) y) ≥ λf (x) + (1− λ) f (y) for all x, y in the domain of f
and all λ ∈ (0, 1) (or, equivalently, for all λ ∈ [0, 1]).
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F̂k̄,̄i

F̂k̄

Ĝk̄,̄i

Ĝk̄

G̃k̄

G̃k̄,̄i

Figure 2.1. Graphical representation of Ĝk̄, F̂k̄ and G̃k̄. Each horizontal line
represents the interval [0, 1] and each dot indicates a value Fk̄,i, i = 1, . . . , p.
Black dots have i ∈ Ik̄ and white dots i /∈ Ik̄. The arrows indicate how G̃k̄ is
constructed.

be a convex combination of F̂ and Ĝ. Then also

Ĥk,i − Ĥk,j =
1
2

(
F̂k,i − F̂k,j

)
+

1
2

(
Ĝk,i − Ĝk,j

)
is a convex combination of F̂k,i − F̂k,j and Ĝk,i − Ĝk,j , and

1− Ĥ+,i =
1
2

(
1− F̂+,i

)
+

1
2

(
1− Ĝ+,i

)
is a convex combination of 1− F̂+,i and 1− Ĝ+,i.

This shows that
• (I) for k and i with Nk,i > 0 we must have F̂k,i = Ĝk,i and
• (II) for k, i and j with Nk,i,j > 0 we must have F̂k,j − F̂k,i = Ĝk,j − Ĝk,i and
• (III) for i with Ni > 0 we must have 1− F̂+,i = 1− Ĝ+,i,

because otherwise
• the concavity of each of the terms l consists of, combined with
• the strict concavity of the logarithm

would give

l
(
Ĥ
)
>

1
2
l
(
F̂
)

+
1
2
l
(
Ĝ
)

= l
(
F̂
)

= l
(
Ĝ
)

which would contradict the assumption that l has a maximum in F̂ (and Ĝ).
Now assume there exists a k and ani ∈ Ik with F̂k,i 6= Ĝk,i. Take one such k fixed and name

it k̄. Denote the smallesti ∈ Ik̄ for which F̂k̄,i 6= Ĝk̄,i with ī. Now assume that F̂k̄,̄i < Ĝk̄,̄i.
We can now make a G̃ from Ĝ by defining for k = 1, . . . ,K and i = 1, . . . , p

G̃k,i =

{
min

{
Ĝk,i, F̂k̄,̄i

}
if k = k̄ and i ≤ ī

Ĝk,i if k 6= k̄ or i > ī
.

See figure2.1 for a graphical representation.
Note that the only pair of indices (k, i) ∈ I where Ĝk,i and G̃k,i differ is

(
k̄, ī
)
, because

• if k 6= k̄ or i > ī, G̃k,i = Ĝk,i by the definition of G̃,
• if k = k̄ and i = ī then indeed G̃k,i = F̂k̄,̄i < Ĝk,i and
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• if k = k̄ and i < ī with i ∈ Ik then we haveĜk,i = F̂k,i by the definition of k̄ and ī,

and sinceF̂k,i < F̂k̄,̄i, we have G̃k,i = min
{
Ĝk,i, F̂k̄,̄i

}
= Ĝk,i.

Also note that G̃ ∈ FK , because
(1) the monotonicity of the Ĝk,i for a certain k is preserved in the order of the G̃k,i and
(2) G̃k,i ≤ Ĝk,i for all k and i, so G̃+,i ≤ Ĝ+,i ≤ 1 for all k.

Next note that we must have Nk̄,̄i = 0, because of (I). Also for allj < ī we must have Nk̄,j,̄i = 0
because otherwise property (II) would give F̂k̄,j − Ĝk̄,j = F̂k̄,̄i − Ĝk̄,̄i 6= 0 and j would be a
smaller index i in Ik̄ than ī with F̂k̄,i 6= Ĝk̄,i, contradicting our definition of ī to be the
smallest index in Ik̄ with this property.

But then Fk̄,̄i can only appear in the log-likelihood l (F ) in the terms Nk̄,̄i,j ln
(
Fk̄,j − Fk̄,̄i

)
with j > ī and the term Nī ln

(
1− F+,̄i

)
. Also, at least one of these terms must have a

non-zero coefficient because of the definition of Ik. If we look carefully at these terms, we
see that l is strictly decreasing in the parameter Fk̄,̄i. Combining this with the facts that the
only pair of indices (k, i) with i ∈ Ik where Ĝk,i and G̃k,i differ is

(
k̄, ī
)

and that G̃k̄,̄i < Ĝk̄,̄i,
we get

l
(
G̃
)
> l
(
Ĝ
)
,

a contradiction. So our assumption that F̂k̄,̄i < Ĝk̄,̄i is wrong.
A similar reasoning could be held for the assumption that F̂k̄,̄i > Ĝk̄,̄i by exchanging the

roles of F̂ and Ĝ. Then we would find a F̃ with

l
(
F̃
)
> l
(
F̂
)
,

another contradiction.
But then it would follow that F̂k̄,̄i = Ĝk̄,̄i, which in turn contradicts our definition of k̄ and

ī. We conclude that our assumption that there exists a (k, i) ∈ I with F̂k,i 6= Ĝk,i is wrong.
This proves the theorem. �

3. Some Theory

In this section, we will introduce some optimization theory that we will use to compute the
MLE introduced in the previous section.

3.1. Convex optimization. We start with the definition of a convex optimization problem.
See for example De Klerk, Roos and Terlaky (2003) for more information on convex
optimization.

Definition 3.1. A convex optimization problem is of the form

(CO) min f (x)
s.t. gj (x) ≤ 0, j = 1, . . . ,m

x ∈ C
where f and gj for j = 1, . . . ,m are convex functions and C ⊂ Rn is a convex set. The
function f is called the objective function and the requirements gj (x) ≤ 0 are called
constraints.

We define the feasible set and a feasible solution as follows.
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Definition 3.2. The feasible set of (CO) is defined by

F := {x ∈ C : gj (x) ≤ 0, j = 1, . . . ,m}
and every x ∈ F is called a feasible solution of (CO).

The following definition of an optimal solution is quite trivial

Definition 3.3. A vector x̄ ∈ F is called an optimal solution of (CO) if

f (x̄) ≤ f (x) for all x ∈ F .
Our goal is to get rid of the constraints gj (x) ≤ 0 in (CO). We start by defining the so

called Lagrangian.

Definition 3.4. The Lagrangian associated with (CO) is defined by

L (x, y) := f (x) +
m∑

j=1

yjgj (x)

where y ∈ Rm. The variable yj is called a Lagrange multiplier for the constraint gj (x) ≤
0.

In order to derive the most powerful theorems, we need to introduce a so called regularity
condition on our optimization problem. Before introducing the so called Slater regularity
condition, we will first introduce the relative interior.

Definition 3.5. The relative interior C0 of a convex set C consists of all points x ∈ C
such that for all x̄ ∈ C there exists an x̃ ∈ C and a λ ∈ (0, 1) such that x = λx̄+ (1− λ) x̃.

Note that the relative interior of Rn is Rn itself. The relative interior differs from the
interior for example when the affine hull of the set is not of the same dimension as the space
the set is in. An example of this is

{
(x, y) ∈ R2 : y = 0

}
, whose interior is empty, but whose

relative interior is the set itself.

Definition 3.6. The problem (CO) satisfies the Slater condition if there exists an x0 ∈ C0

such that

gj

(
x0
)
< 0 for all j where gj is nonlinear

gj

(
x0
)
≤ 0 for all j where gj is linear

Note that this Slater condition is easily satisfied for problem with only linear constraints.
In that case, it simply reduces to finding a feasible solution in the relative interior of C. This
can always be done if C is non-empty, according to the following theorem:

Theorem 3.7. If a convex set C is non-empty, then its relative interior C0 is non-empty as
well.

We now present the following important result from optimization theory.

Theorem 3.8. Given a problem (CO) that satisfies the Slater condition, let x̄ ∈ F be a
feasible vector and L the Lagrangian. Then x̄ is an optimal solution of (CO) if and only if
there exists a vector ȳ ≥ 0 such that

(i) x̄ = arg min
x∈C

L (x, ȳ) and

(ii)
m∑

j=1

ȳjgj (x̄) = 0.
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Here we use the notation y ≥ 0 with y ∈ Rm, which means that yj ≥ 0 for j = 1, . . . ,m.
Note that the minimization problem in the theorem is over the set C and not over F .

Note that we can also handle equality constraints in this manner, because

g (x) = 0 ⇔ g (x) ≤ 0 and g (x) ≥ 0
⇔ g (x) ≤ 0 and − g (x) ≤ 0.

So, we replace an equality constraint g (x) = 0 by the two inequality constraints derived
above. Let µ denote the Lagrange multiplier for the constraint g (x) ≤ 0 and ν the Lagrange
multiplier for the constraint −g (x) ≤ 0, then we have

µg (x) + ν · −g (x) = (µ− ν) g (x) .

We can thus substitute µ − ν by one Lagrange multiplier, λ, that we will multiply g (x) by.
In theorem 3.8 above, we then let λ ∈ R, because µ − ν can become arbitrarily positive or
negative.

3.2. Fenchel optimality. We will use the so called Fenchel optimality conditions later on,
so we define them here. See Robertson, Wright and Dykstra (1998) for more information
on Fenchel duality and isotonic regression, which is introduced in the next section. First, we
introduce the concept of a convex cone.

Definition 3.9. A convex set K is called a convex cone if for all x ∈ K and all λ ≥ 0 also
λx ∈ K.

Now, the following theorem gives the Fenchel optimality conditions.

Theorem 3.10. Let K be a convex cone and φ : Rn → (−∞,∞] a convex, continuous function
with a unique minimum over K and that is continuously differentiable on the set where φ is
finite: {x ∈ Rn : φ (x) <∞}. Then

x̂ = arg min
x∈K

φ (x)

if and only if it satisfies the Fenchel optimality conditions

〈x̂,∇φ (x̂)〉 = 0 and 〈x,∇φ (x̂)〉 ≥ 0 for all x ∈ K.

3.3. Isotonic regression. A special kind of optimization problem that we will discuss here,
is isotonic regression. Here the convex minorants will come into play. We start by defining
what isotonic regression is.

Definition 3.11. The isotonic regression problem is defined as

min
x∈C

n∑
i=1

(xi − yi)
2wi

with y, w ∈ Rn given vectors, wi > 0, i = 1, . . . , n, and

C = {x ∈ Rn : 0 ≤ x1 ≤ . . . ≤ xn} (3.1)

the set of increasing finite sequences, bounded below by 0.

The solution of an isotonic regression problem can be calculated by means of a greatest
convex minorant. We start by defining the latter.
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Definition 3.12. Let S ⊂ Rn+1 be a set of points and define the set of convex minorants of
S by

M := {f : Rn → R : f is convex and f (x) ≤ y for all (x, y) ∈ S} ,
then the greatest convex minorant (GCM) of S is defined by

g (x) = sup
f∈M

f (x) for all x ∈ Rn.

Note that the greatest convex minorant is again a convex function, and in case S has a finite
number of elements and n = 2, the greatest convex minorant is a piecewise linear function
where the boundaries of the pieces are at points in S.

We now arrive at the theorem that describes how to solve the isotonic regression problem
using greatest convex minorants.

Theorem 3.13. Consider the isotonic regression problem from definition 3.11. Define the
cloud of points S = {Pi : i = 0, . . . , n} in R2 by P0 = (0, 0) and

Pj =

(
j∑

i=1

wi,

j∑
i=1

yiwi

)
for j = 1, . . . , n.

Now, x̂ is the optimal solution of the isotonic regression problem if and only if for i = 1, . . . , n
x̂i equals the maximum of 0 and the left derivate of the greatest convex minorant of the cloud
S, evaluated at the point Pi.

Finding the greatest convex minorant of a finite cloud of points is related to finding the
so called convex hull. In fact, the lower half of the convex hull of the cloud is the greatest
convex minorant. Finding a convex hull can be done in O (n log n) time with for example a
divide and conquer algorithm, or in O

(
n2
)

time using a simple wrapping algorithm.

4. Computing The Maximum Likelihood Estimator

In this section we will address the computation of the MLE using Iterative Convex Minorant
(ICM) algorithms.

4.1. Adding a Lagrange Multiplier. The definition of the MLE is given by equation 2.3.
This is a maximization problem over the space FK , as defined in equation 2.4. Note that FK is
not a convex cone, because of the constraint F+,p ≤ 1. We want to rewrite our optimization
problem in such a way that the space over which we optimize looks more like the one in
isotonic regression; as defined in equation 3.1.

We will use the following short hand notations for summations:∑
k

for
K∑

k=1

,
∑

i

for
p∑

i=1

,
∑
j>i

for
p∑

j=i+1

,
∑
j<i

for
i−1∑
j=1

.

Let’s first rewrite the problem as a convex optimization problem in a form similar to (CO):

(A) min φ (F )
s.t. F+,p − 1 ≤ 0

F ∈ AK
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with

φ (F ) = −l (F )

= −
∑

k

∑
i

Nk,i lnFk,i −
∑

k

∑
i

∑
j>i

Nk,i,j ln (Fk,j − Fk,i)

−
∑

i

Ni ln (1− F+,i) , (4.1)

minus the log-likelihood, and

AK =
{
F ∈ RpK : 0 ≤ Fk,1 ≤ . . . ≤ Fk,p, k = 1, . . . ,K

}
(4.2)

the space we are optimizing over.
Note that we don’t always need a Lagrange multiplier to get rid of the constraint F+,p ≤ 1.

If Np > 0, the term −Np ln (1− F+,p) in φ makes sure F+,p ≤ 1.
We can add a Lagrange multiplier and obtain, for each λ ≥ 0, the problem

(Aλ) min φλ (F )
s.t. F ∈ AK

with
φλ (F ) = φ (F ) + λ (F+,p − 1) . (4.3)

We could now proceed and apply the Fenchel optimality conditions to this problem. How-
ever, it will be more convenient later if we first adapt the problem (A) as follows:

(B) min ψ (F, s)
s.t. F+,p + s− 1 = 0

(F, s) ∈ BK

with

ψ (F, s) = −
∑

i

∑
k

Nk,i lnFk,i −
∑

k

∑
i

∑
j>i

Nk,i,j ln (Fk,j − Fk,i)

−
∑

i

Ni ln (F+,p + s− F+,i) (4.4)

and

BK =
{
(F, s) ∈ RpK+1 : F ∈ AK , s ≥ 0

}
=

{
(F, s) ∈ RpK+1 : 0 ≤ Fk,1 ≤ . . . ≤ Fk,p, k = 1, . . . ,K, s ≥ 0

}
. (4.5)

Note that we added a variable s in this problem, added the constraints s ≥ 0 and F+,p +s = 1
and replaced the 1 in φ by F+,p + s. The following theorem defines exactly how the problems
(A) and (B) are related.

Theorem 4.1. Let FA be an optimal solution of problem (A) and (FB, sB) an optimal solution
of problem (B). Then FB is also an optimal solution of problem (A) and (FA, 1− (FA)+,p) is
also an optimal solution of problem (B).

Proof. Note that FB is a feasible solution of (A) and FA is an optimal solution of (A), so

φ (FB) ≤ φ (FA) .
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Similarly, note that (FA, 1− (FA)+,p) is a feasible solution of (B) and (FB, sB) is an optimal
solution of (B), so

ψ(FA, 1− (FA)+,p) ≤ ψ (FB,sB) .

Next, note that since FB is an optimal solution of (B), it is also a feasible solution of (B)
and thus satisfies (FB)+,p + sB = 1, yielding

ψ (FB, sB) = φ (FB) .

Similarly, FA is a feasible solution of (A) and satisfies

φ (FA) = ψ(FA, 1− (FA)+,p).

Combining these four equations yields

φ (FB) ≤ φ (FA) = ψ(FA, 1− (FA)+,p) ≤ ψ (FB,sB) = φ (FB) ,

which can only be true if

φ (FB) = φ (FA) = ψ(FA, 1− (FA)+,p) = ψ (FB,sB) = φ (FB) ,

proving the theorem. �

Now, we can add a Lagrange multiplier to (B) and obtain for each λ ∈ R the related
problem

(Bλ) min ψλ (F, s)
s.t. (F, s) ∈ BK

with the Lagrangian

ψλ (F, s) = ψ (F, s) + λ (F+,p + s− 1) . (4.6)

4.2. Applying the Fenchel optimality conditions. We now want to apply the Fenchel
optimality conditions from theorem 3.10 to problem (Bλ). Note that this can be done because
BK is a convex cone. The Fenchel optimality conditions for the optimum (F̂ , ŝ) are:〈

(F̂ , ŝ),∇ψλ(F̂ , ŝ)
〉

= 0 and〈
(F, s),∇ψλ(F̂ , ŝ)

〉
≥ 0 for all (F, s) ∈ BK .

We need to compute the first order derivatives of ψλ. We start with computing the deriva-
tives of ψ with respect to Fk̄,̄i. Note that we need to be careful by considering the two separate
cases ī < p and ī = p, and by noting that∑

i

−Ni ln (F+,p + s− F+,i) =
∑
i<p

−Ni ln (F+,p + s− F+,i) +Np ln s.

Keeping this in our minds, we continue:
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∂

∂Fk̄,̄i

ψ (F, s) =
∂

∂Fk̄,̄i

∑
i

−Ni ln (F+,p + s− F+,i)

+
∂

∂Fk̄,̄i

∑
k

∑
i

−Nk,i ln (Fk,i)

+
∂

∂Fk̄,̄i

∑
k

∑
i

∑
j>i

−Nk,i,j ln (Fk,j − Fk,i)

= 1{̄i<p}
Nī

F+,p + s− F+,̄i

− 1{̄i=p}
∑
i<p

Ni

F+,p + s− F+,i

−
Nk̄,̄i

Fk̄,̄i

+
∑
j>ī

Nk̄,̄i,j

Fk̄,j − Fk̄,̄i

−
∑
j<ī

Nk̄,j,̄i

Fk̄,̄i − Fk̄,j

. (4.7)

The derivative of ψλ with respect to Fk̄,̄i is now:

∂

∂Fk̄,̄i

ψλ (F, s) =
∂

∂Fk̄,̄i

[ψ (F, s) + λ (F+,p + s− 1)]

= 1{̄i<p}
Nī

F+,p + s− F+,̄i

+ 1{̄i=p}

λ−∑
i<p

Ni

F+,p + s− F+,i


−
Nk̄,̄i

Fk̄,̄i

+
∑
j>ī

Nk̄,̄i,j

Fk̄,j − Fk̄,̄i

−
∑
j<ī

Nk̄,j,̄i

Fk̄,̄i − Fk̄,j

(4.8)

The derivative of ψ with respect to s is:
∂

∂s
ψ (F, s) =

∂

∂s

∑
i

−Ni ln (F+,p + s− F+,i)

= −
∑

i

Ni

F+,p + s− F+,i
(4.9)

The derivative of ψλ with respect to s is:
∂

∂s
ψλ (F, s) =

∂

∂s
[ψ (F, s) + λ (F+,p + s− 1)]

= −
∑

i

Ni

F+,p + s− F+,i
+ λ (4.10)

We will now apply the first Fenchel optimality condition:∑
k̄

∑
ī

F̂k̄,̄i

∂

∂Fk̄,̄i

ψλ

(
F̂ , ŝ

)
+ ŝ

∂

∂s
ψλ

(
F̂ , ŝ

)
= 0.

The terms with ∂
∂Fk̄,̄i

ψλ

(
F̂ , ŝ

)
expand to quite a number of new terms, so will handle them

one by one. We start with∑
k̄

∑
ī

[
F̂k̄,̄i · −

Nk̄,̄i

F̂k̄,̄i

]
= −

∑
k̄

∑
ī

Nk̄,̄i. (4.11)
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The following two terms can be rewritten as follows, by changing the order of the summations
properly and then renaming the summation index variables in a suitable way:

∑
k̄

∑
ī

F̂k̄,̄i

∑
j>ī

Nk̄,̄i,j

F̂k̄,j − F̂k̄,̄i

−∑
k̄

∑
ī

F̂k̄,̄i

∑
j<ī

Nk̄,j,̄i

F̂k̄,̄i − F̂k̄,j


=

∑
k̄

∑
ī

∑
j>ī

[
F̂k̄,̄i

Nk̄,̄i,j

F̂k̄,j − F̂k̄,̄i

]
−
∑

k̄

∑
j

∑
ī>j

[
F̂k̄,̄i

Nk̄,j,̄i

F̂k̄,̄i − F̂k̄,j

]

=
∑

k̄

∑
ī

∑
j>ī

[
F̂k̄,̄i

Nk̄,̄i,j

F̂k̄,j − F̂k̄,̄i

− F̂k̄,j

Nk̄,̄i,j

F̂k̄,j − F̂k̄,̄i

]

= −
∑

k̄

∑
ī

∑
j>ī

[(
F̂k̄,j − F̂k̄,̄i

) Nk̄,̄i,j

F̂k̄,j − F̂k̄,̄i

]

= −
∑

k̄

∑
ī

∑
j>ī

Nk̄,̄i,j . (4.12)

Next, we use in the fact that
∑

k Fk,i = F+,i by the definition of F+,i for these terms:

∑
k̄

∑
ī

[
F̂k̄,̄i1{̄i<p}

Nī

F+,p + s− F+,̄i

]
+
∑

k̄

∑
ī

F̂k̄,̄i1{̄i=p}

λ−∑
i<p

Ni

F+,p + s− F+,i


=

∑
k̄

∑
ī<p

[
F̂k̄,̄i

Nī

F̂+,p + ŝ− F̂+,̄i

]
+
∑

k̄

F̂k̄,p

λ−∑
i<p

Ni

F̂+,p + ŝ− F̂+,i


=

∑
ī<p

∑
k̄

F̂k̄,̄i

 Nī

F̂+,p + ŝ− F̂+,̄i

+

∑
k̄

F̂k̄,p

λ−∑
i<p

Ni

F̂+,p + ŝ− F̂+,i


= −

∑
ī<p

[(
F̂+,p − F̂+,̄i

) Nī

F̂+,p + ŝ− F̂+,̄i

]
+ F̂+,pλ. (4.13)

The last term is the one for ŝ:

ŝ ·

[
−
∑

i

Ni

F̂+,p + ŝ− F̂+,i

+ λ

]

= −
∑

ī

[
ŝ

Nī

F̂+,p + ŝ− F̂+,̄i

]
+ ŝλ

= −
∑
ī<p

[
ŝ

Nī

F̂+,p + ŝ− F̂+,̄i

]
+Np + ŝλ. (4.14)
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We can now sum up equations 4.11 to 4.14, and use equation 1.1 to get rid of a lot of terms:

0 = −
∑

k̄

∑
ī

Nk̄,̄i −
∑

k̄

∑
ī

∑
j>ī

Nk̄,̄i,j −
∑
ī<p

[(
F̂+,p − F̂+,̄i

) Nī

F̂+,p + ŝ− F̂+,̄i

]
+ F̂+,pλ

−
∑
ī<p

[
ŝ

Nī

F̂+,p + ŝ− F̂+,̄i

]
+Np + ŝλ

= −
∑

k̄

∑
ī

Nk̄,̄i −
∑

k̄

∑
ī

∑
j>ī

Nk̄,̄i,j −
∑
ī<p

[(
F̂+,p + ŝ− F̂+,̄i

) Nī

F̂+,p + ŝ− F̂+,̄i

]
+Np

+
(
F̂+,p + ŝ

)
λ

= −
∑

k̄

∑
ī

Nk̄,̄i −
∑

k̄

∑
ī

∑
j>ī

Nk̄,̄i,j −
∑
ī<p

Nī +Np +
(
F̂+,p + ŝ

)
λ

= −n+
(
F̂+,p + ŝ

)
λ

So we find this very nice equation for an optimal solution (F̂ , ŝ) of problem (Bλ):

n =
(
F̂+,p + ŝ

)
λ. (4.15)

So choosing λ = n yields an optimal (F̂ , ŝ) ∈ BK for problem (Bλ) with F̂+,p + ŝ = 1.
Then (F̂ , ŝ) is also a feasible solution for problem (B). Note that the Slater condition from
definition 3.6 is satisfied, because the constraint F+,p + s− 1 = 0 is linear. Now we can apply
theorem 3.8, because we have found a feasible (F̂ , ŝ) and a λ̂ such that

(1) (F̂ , ŝ) minimizes the Lagrangian ψλ̂ (F, s) and
(2) λ̂(F̂+,p + ŝ− 1) = 0,

so (F̂ , ŝ) is an optimal solution of problem(B).
We could also have applied the Fenchel optimality conditions to problem (Aλ). The space

AK is also a convex cone. The derivatives of φλ are quite similar to those of ψλ, but in fact
even simpler. We find for the derivatives of φ (compare this to equation 4.7):

∂

∂Fk̄,̄i

φ (F ) =
Nī

1− F+,̄i

−
Nk̄,̄i

Fk̄,̄i

+
∑
j>ī

Nk̄,̄i,j

Fk̄,j − Fk̄,̄i

−
∑
j<ī

Nk̄,j,̄i

Fk̄,̄i − Fk̄,j

. (4.16)

For the derivatives of φλ we find (compare this to equation 4.8)

∂

∂Fk̄,̄i

φλ (F ) =
Nī

1− F+,̄i

−
Nk̄,̄i

Fk̄,̄i

+
∑
j>ī

Nk̄,̄i,j

Fk̄,j − Fk̄,̄i

−
∑
j<ī

Nk̄,j,̄i

Fk̄,̄i − Fk̄,j

+ 1{̄i=p}λ. (4.17)

The Fenchel optimality conditions for an optimal solution F̂ of problem (Aλ) now are〈
F̂ ,∇φλ(F̂ )

〉
= 0 and〈

F,∇φλ(F̂ )
〉

≥ 0 for all F ∈ AK .
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The first condition can be calculated in a similar way as we did with problem (Bλ). Using
equations 4.11 and 4.12, together with the equations∑

k̄

∑
ī

[
Fk̄,̄i ·

Nī

1− F+,̄i

]
=

∑
ī

[
F+,̄i ·

Nī

1− F+,̄i

]
(4.18)

∑
k̄

∑
ī

[
Fk̄,̄i · 1{̄i=p}λ

]
= λF+,p, (4.19)

we get

0 = −
∑

k̄

∑
ī

Nk̄,̄i −
∑

k̄

∑
ī

∑
j>ī

Nk̄,̄i,j +
∑

ī

[
F̂+,̄i ·

Nī

1− F̂+,̄i

]
+ F̂+,pλ

= −n+
∑

ī

Nī +
∑

ī

[
F̂+,̄i ·

Nī

1− F̂+,̄i

]
+ F̂+,pλ

= −n+
∑

ī

Nī

1− F̂+,̄i

+ F̂+,pλ.

So we find

n−
∑

i

Ni

1− F̂+,i

= F̂+,pλ (4.20)

for an optimal solution F̂ of (Aλ). If Np = 0, then we know that F̂+,p = 1 for an optimal
solution of problem (A). If we would know F̂+,i for all i < p, then we could choose

λ̂ = n−
∑

i

Ni

1− F̂+,i

such that an optimal solution of
(
Aλ̂

)
is also an optimal solution of (A) by theorem 3.8.

4.3. Using the ICM algorithm. We will describe here how to use the Iterative Convex
Minorant (ICM) algorithm for computing the MLE. See for example Jongbloed (1998) for a
clear description of the ICM algorithm, and Maathuis (2005) for its application in competing
risks subject to current status data censoring.

4.3.1. A suitable optimization problem. If Np > 0, we know that the term −Np ln (1− F+,p)
in φ makes sure the constraint F+,p ≤ 1 is satisfied in problem (A). If Np = 0 however, we
need a Lagrange multiplier as in problem (Bλ). We know we have to take λ = n in that case.
Also, in an optimal solution we will have F̂+,p = 1, and thus ŝ = 0, because φ must be strictly
decreasing in Fk,p for at least one k and is decreasing in all Fk,p. So we may also minimize
ψn (F, 0) over AK in that case in order to compute the MLE.

Hence, we can define our minimization problem by

(C) min ϕ (F )
s.t. F ∈ CK

with

ϕ (F ) =

{
φ (F ) if Np > 0,
ψn (F, 0) if Np = 0,
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and
CK =

{
F ∈ Rm : 0 ≤ Fk,ik,1

≤ · · · ≤ Fk,ik,mk
, k = 1, . . . ,K

}
.

(Recall the definitions of m and ik,j in equations 2.7 and 2.8 here.) The MLE is given by the
unique solution of this problem. The notation F ∈ Rm simply indicates that F only contains
the elements Fk,i with (k, i) ∈ I.

4.3.2. Overview. The ICM algorithm is an iterative algorithm. It can be seen as an Sequential
Quadratic Programming algorithm that only uses the diagonal elements of the Hessian matrix,
i.e. only the second order derivatives with respect to the same variable and no mixed second
order derivatives.

We start with a fixed estimate F (0) ∈ CK , and for each iteration l = 0, 1, 2, . . . we construct
F (l+1) as follows:

• We approximate ϕ around F (l) by ϕ(l) (using the gradient and Hessian diagonal ele-
ments)

• We find the minimum F new of ϕ(l) (using greatest convex minorants)
• We find the best α > 0 to set F (l+1) = F (l) + α

(
F new − F (l)

)
(the so called line

search)
A suitable stop condition for the algorithm can be determined by using the Fenchel optimality
conditions.

4.3.3. Approximation. We need the second order derivatives with respect to the same variable
of φ and ψλ for the ICM algorithm. We find

∂2

∂F 2
k̄,̄i

φ (F ) =
Nī(

1− F+,̄i

)2 +
Nk̄,̄i

F 2
k̄,̄i

+
∑
j<ī

Nk̄,j,̄i(
Fk̄,̄i − Fk̄,j

)2 +
∑
j>ī

Nk̄,̄i,j(
Fk̄,j − Fk̄,̄i

)2
and

∂2

∂F 2
k̄,̄i

ψλ (F, s) = 1{̄i<p}
Nī(

F+,p + s− F+,̄i

)2 + 1{̄i=p}
∑
i<p

Ni

(F+,p + s− F+,i)
2

+
Nk̄,̄i

F 2
k̄,̄i

+
∑
j<ī

Nk̄,j,̄i(
Fk̄,̄i − Fk̄,j

)2 +
∑
j>ī

Nk̄,̄i,j(
Fk̄,j − Fk̄,̄i

)2 .
The approximation of ϕ around F (l) is given by

ϕ(l) (F ) = ϕ
(
F (l)

)
+
∑
k,i

(
Fk,i − F

(l)
k,i

) ∂ϕ

∂Fk,i

(
F (l)

)
+

1
2

∑
k,i

(
Fk,i − F

(l)
k,i

)2 ∂2ϕ

∂F 2
k,i

(
F (l)

)

= ϕ
(
F (l)

)
− 1

2

∑
k,i

(
∂ϕ

∂Fk,i

(
F (l)

))2

∂2ϕ
∂F 2

k,i

(
F (l)

)
+

1
2

∑
k,i

Fk,i −

F (l)
k,i −

∂ϕ
∂Fk,i

(
F (l)

)
∂2ϕ
∂F 2

k,i

(
F (l)

)
2

∂2ϕ

∂F 2
k,i

(
F (l)

)
.
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4.3.4. Minimization. The next step is the minimization of the approximation ϕ(l). Note that
the first two terms in the previous equation are constant terms, so minimizing ϕ(l) over CK

is equivalent to

min
F∈CK

1
2

∑
k,i

(Fk,i − yk,i)
2wk,i

with

yk,i = F
(l)
k,i −

∂ϕ
∂Fk,i

(
F (l)

)
∂2ϕ
∂F 2

k,i

(
F (l)

)
wk,i =

∂2ϕ

∂F 2
k,i

(
F (l)

)
.

We can split this problem in K smaller problems because there are no constraints between
Fk,is with different k in the definition of CK . So F new should be composed of the solutions to
the problems

min
Fk∈CK

1
2

∑
i

(Fk,i − yk,i)wk,i

for k = 1, . . . ,K. These are isotonic regression problems, as defined in 3.11. Their solutions
are hence given by theorem 3.13. This involves calculating the greatest convex minorant of a
cloud op points, hence the name Iterative Convex Minorant algorithm.

4.3.5. Line search. The last procedure in each step is the line search. We search for the
α > 0 such that setting F (l+1) = F (l) + α

(
F new − F (l)

)
minimizes ϕ

(
F (l+1)

)
. There are

several algorithms to do this line search.
Since F new and F (l) are both in CK , we can choose α anywhere in the interval [0, 1]. It is

also possible to determine the maximum value for α such that F (l+1) ∈ CK . When ϕ = φ
because Np > 0, the maximum value of α can also be determined such that F+,p ≤ 1.

The simplest line search algorithm tries several values for α and picks the one which yields
the smallest value for the objective function. We know that α 7→ ϕ

(
F (l) + α

(
F new − F (l)

))
is a convex mapping, so we can use a bisection algorithm that tries to find the point where
its derivative with respect to α is zero.

4.3.6. Optimality check. The Fenchel optimality condition can be used to formulate a suitable
stop condition. The basic idea is that we can replace the 0’s by ε’s. Also, we don’t have to
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try all F ∈ CK , but only a set of vectors that form a kind of ’base’ for CK . These vectors are

e1,i1,1 = (1, 1, . . . , 1, 1︸ ︷︷ ︸
m1 elements

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m2 elements

, . . . , 0, 0, . . . , 0, 0︸ ︷︷ ︸
mK elements

),

e1,i1,2 = (0, 1, . . . , 1, 1︸ ︷︷ ︸
m1 elements

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m2 elements

, . . . , 0, 0, . . . , 0, 0︸ ︷︷ ︸
mK elements

),

...
...

...
e1,i1,m1

= (0, 0, . . . , 0, 1︸ ︷︷ ︸
m1 elements

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m2 elements

, . . . , 0, 0, . . . , 0, 0︸ ︷︷ ︸
mK elements

),

e2,i2,1 = (0, 0, . . . , 0, 0︸ ︷︷ ︸
m1 elements

, 1, 1, . . . , 1, 1︸ ︷︷ ︸
m2 elements

, . . . , 0, 0, . . . , 0, 0︸ ︷︷ ︸
mK elements

),

...
...

...
eK,iK,mK

= (0, 0, . . . , 0, 0︸ ︷︷ ︸
m1 elements

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m2 elements

, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸
mK elements

).

Any vector F ∈ CK is a linear combination of these vectors with non-negative weights. Fur-
thermore, the sum of these weights equals

∑
k Fk,ik,mk

. So when〈
ek,i,∇ϕ(F̂ )

〉
≥ −ε for all (k, i) ∈ I, (4.21)

we know that 〈
F,∇ϕ(F̂ )

〉
≥ −εF+,p for all F ∈ CK .

The first Fenchel optimality condition is changed into∣∣∣〈F̂ ,∇ϕ(F̂ )
〉∣∣∣ ≤ ε. (4.22)

Equations 4.21 and 4.22 intuitively provide suitable conditions to check whether a solution F̂
is near an optimal solution.

Note that since the values that ϕ attains are in the neighbourhood of n, ∇ϕ also takes
values in the neighbourhood of n. Therefore, we would choose ε to be n times an accuracy
parameter for the algorithm, such that the same value for the accuracyparameter can be used
for inputs with different n.
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Appendix A. Implementation Example

I’ve written an implementation of the ICM algorithm, applied to the Competing Risks
Interval Censoring (CRIC) problem, in C++. Also, I have written some MatLab routines for
creating random samples and displaying the results of the C++ program graphically.

In this appendix, I will shortly describe the code and how to use it. Many details about the
implementation can be found in comments in the code itself, so I will only give an overview
here to help you getting started.
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The program sources can be downloaded from http://www.kuijvenhoven.net/comprisk.
zip. If you have any questions or comments, please email me at bram at kuijvenhoven dot
net.

A.1. The comprisk program. In the zip file you’ll find a subdirectory named CompetingRisk.
It contains the C++ source files (.cpp) and header files (.h) of the comprisk program, ac-
companied by a simple Makefile file.

For our convenience I have included an executable called comprisk.exe for the Windows
platform. For the other platforms, you’ll have to compile the sources yourself, but I assume
that won’t be a problem. Note that you might want to change the line EXE=comprisk.exe
into EXE=comprisk for Unix-based platforms.

The ICM algorithm is implemented in the CICMSolver class, defined in the icm.h header
file. Its most important method is called Solve. Other methods include FenchelOptimality
(implements the procedure explained in section 4.3.6), GreatestConvexMinorant (which finds
the GCM of a given set of points) and LineSearch (which implements a bisection line search
algorithm, see section 4.3.5).

Abstract methods from CICMSolver are overriden in the CCRICSolver descendant, defined
in the cric.h header file. These abstract methods include Phi, GradPhi and HessianDiagPhi
for the calculation of the object function ϕ and its derivatives, and InitialEstimate, which
calculates an initial estimate F (0). In this way, the logic for the general ICM algorithm and
the specifics for the CRIC problem are kept in separate places.

CCRICSolver also has the very important public method SetSample, which initialises the
internal tables of the object using a given CRIC sample. These internal tables have an
optimised format such that cases with large K or many duplicate observation times are
handled efficient as well. The code also takes care it only calculates the F̂k,i for (k, i) in the
uniqueness set I (the fDistSize and fDistIndex members come into play here).

The comprisk.cpp file provides a command line interface to the solver classes. Please run
comprisk.exe -h for help on usage. (An example of calling and using comprisk can be found
in the MatLab file example.m.) The program uses getopt.h, which is a very simple GNU
getopt replacement that deals with command line parameters. It can only deal with so called
’short options’ (of the form -a [arg]), but that is sufficient in this case.

A.2. The MatLab routines. There is also a bunch of .m files distributed in the zip file.
These are MatLab files. Most of them deal with the generation of random CRIC samples.
Some can be used to process the output of the comprisk program. Most files should have
some comments at the start of the file explaining its purpose and use, so you can use the
help command from the MatLab console (e.g. help randcricsample).

The example.m script gives a nice example of how to use the MatLab routines. This script
will generate some random samples, call comprisk on it and finally display the results. When
calling it the second time, it won’t re-generate the samples, because this takes quite some
time. You can remove the examplen.sample.txt files, so it will generate them again. The
resulting graph displays the actual distribution in black, and several estimates, derived from
several kinds of observations, in other colors.

Note that you need to call comprisk with the -f option to get full output, with information
about the tables at each iteration etc. The example.m script does do this. I won’t give a
complete reference here, as you probably need to play around a bit with the code anyway to
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get the graphs you want or to work with data sets you have in your favorite format. To get
started, I recommend the following steps:

• Make sure the Current Directory of MatLab is at the path where you extracted the
.m files

• Make sure you have a compiled comprisk executable in the same directory
• Run from the MatLab Command Window the command example. (Note: this might

take some time.) A graph will appear as described above.
• You can run showicm(s(1)) to showicm(s(4)) to see the convergence process. (Click

in the graph or press a key while the figure window has focus to see the next frame
of the animation each time. Hint: you can hold the space bar pressed for example.)

A.3. File format. Here I will give a short description of the file formats the comprisk
program uses, so you can plug in your own data and read the data back.

A.3.1. comprisk input. The input of the comprisk program should be in the following format:

n K
t1,1 t1,2 k1,1 k1,2

t2,1 t2,2 k2,1 k2,2

. . .
tn,1 tn,2 kn,1 kn,2

Here, n and K denote the same things as in this article. The meaning of ti,1, ti,2, ki,1 and
ki,2 is as described in the following table (recall the definitions from section 1)

Ii ti,1 ti,2 ki,1 ki,2

1 (any) Vi −1 Yi

2 . . . Ci Ui Vi 0 Yi

Ci + 1 Ui (any) 0 −1

The table should be read as follows: for each value of Ii, the interpretation of ti,1, ti,2, ki,1

and ki,2 is given. The entries with ’(any)’ denote that any value could be given. ti,1 and ti,2
can be floating point numbers; ki,1 and ki,2should be integers.

A.3.2. comprisk output. The output from comprisk can be read by the readoutput.m file.
This m-file returns a MatLab struct which holds all the information in the file. The output
of comprisk is such that MatLab can easily read it. The output consist of a number of tables.
There are two types of tables in the output.

Simple tables are of the format: NAME : V1 V2 . . . Vn. Whitespace does not matter here.
The table is terminated by the first token that is not a valid number (the number n is thus
not given explicitly in the input). This table type can be used for a single number, or for a
vector. The NAME can contain any non whitespace character, except a colon, and should be
followed by a colon.

Headed tables are of the format:
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NAME Headers Needs -f?
K - No
T - No

distIndex{k} - No
needLagrangian - Yes

Ni i n Yes
Nki(k) i n Yes
Nkij(k) i j n Yes

iteration(i).GCM(k) G V inHull Yes
iteration(i).dists(k) start new optimal grad hdiag Yes

conv phi alpha stepSize Yes
solution{k} - No

Table 1. Tables that can appear in the output of comprisk. NAME s with
a k will appear for each k = 1, . . . ,K; the index i will appear for every itera-
tion. The middle column list the headers for header tables; simple tables are
indicates by a dash. The last column tells whether you need to run comprisk
with the -f option in order to get these tables.

NAME ::
H1 H2 . . . Hm

V1,1 V2,1 . . . Vm,1

V1,2 V2,2 . . . Vm,2

. . .
V1,n V2,n . . . Vm,n

These tables consist of three parts: the NAME section, the header section and the value
section. The NAME section should end with two colons. The header section should be on a
separate line. The value section is terminated by the first token that is not a number. This
table type is suitable for displaying several vectors of the same length next to each other.
This allows for some tables to be in a format that can be read easily. The NAME should
follow the same rules as for the simple tables. H1 to Hm are header names for each column
of the value data. These names should only consist of letters from the alphabet. The vector
for header Hi has values Vi,1 to Vi,n.

The NAME s the comprisk program outputs, are such that MatLab can easily interpret
them. In fact, I use parenthesis and curly braces with a numeric index, and dots followed
by field names to make the output structured. This will probably all become clear to you
when you take a look at some output file of comprisk, and at the structure of the variable
the readoutput.m file returns.

readoutput.m deals with the tables as follows: it returns a struct called s, that has all
NAME s as fields. (Of course MatLab will interpret the array indices, cell array indices and
struct field names that can be in NAME.) For headed tables, the variable indicated by NAME
are structs again, with fields H1 to Hm.

Table 1 list details about the tables that can appear in the comprisk output.



References 21

References

Maathuis, M. (2005). Competing risk data subject to current status censoring: Nonpara-
metric estimation of the sub-distribution functions. Ph.D. Thesis in preparation.

Groeneboom, P. and Wellner, J.A. (1992). Information Bounds and Nonparametric
Maximum Likelihood Estimation. Birkhäuser Verlag, Basel.?
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